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Entropy changes are calculated for the irreversible cooling of a homoge- 
neous N-particle system. The execution of an appropriate model stochastic 
process enables one to calculate the "d i sc r imina t ion"  D (from the transit ion 
probabilities of the actual steps) and ( -  D)  is shown to be equal to the 
external entropy change ASoxt. This is trivially true for the "Metropol i s -  
l ike"  processes, where the individual particles mainta in  a direct heat  
exchange with a reservoir. "Coope ra t i ve"  processes, which at tr ibute the 
heat exchange to the mass of N particles in toto, are also considered; for 
these ASext is still equal to ( - - D ) .  Hence, knowing ( D )  and the entropy 
of the initial and final states of the system, one can calculate the net entropy 
product ion and study its minimization. Alternatively, a consistently proba-  
bilistic approach (independent of thermodynamic equivalents) postulates 
that  statistical mechanical processes proceed with the least discrimination, 
M i n ( D ) ,  for given conditions. The postulate is supported by its conformance 
with the second law of thermodynamics.  M i n ( D )  reduces to the Jaynes 
principle bo th  at equilibrium and for isolated systems. Computer  experi- 
ments illustrating the calculation of  D are presented. These describe the 
cooling of a square Ising lattice, with the help of the Metropolis and of the 
cooperative model processes; the latter, optimized for least entropy 
production, rapidly converge toward equilibrium. 

KEY W O R D S :  Irreversible statistical mechanics; entropy production; 
information; model stochastic processes; Metropolis Monte Carlo; com- 
puter simulation; Ising lattice; cooperative relaxation. 
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1. I N T R O D U C T I O N  

Equilibrium statistical mechanics relates the macroscopic behavior of a 
many-body system to the probability distribution of its microstates, or 
"configurations." Specifically, ifp~ are the configurational probabilities, the 
entropy (in k units and for countable configurations) is equal to 

S= Max(-~pr 1 = Max( - logp)  (1) 
~ - -  ] \ i 

The maximization (made intuitively plausible by Jaynes' principle of maxi- 
mum uncertainty ~1-3>) is with respect to the assignment of an optimal prob- 
ability distribution, subject to specified constraints, such as the system's 
energy and volume. It fixes the proper probabilistic model, enabling the 
description of the system's macroscopic behavior. 

Take the evolution with time of a many-body system. In analogy to 
systems at rest, one expects that the macroscopic behavior, and especially 
the entropy production due to an irreversible variation of the constraints, 
might be calculated with the help of a time-dependent probabilistic (stochastic) 
process. Since configurational probabilities p~ can be defined for any instant 
of a stochastic process, what suggests itself is to try and calculate the entropy 
changes for an irreversible process with the help of a generalization of 
Eq. (0, 2 

St= Max( ~ ~ Max( -  log p') (2) _ p t logpt]  = 

However, except for the treatment of processes involving systems at steady 
state, or of systems slightly perturbed from the equilibrium, (m singularly little 
progress has been made on the basis of such a generalized equation. This 
seems to be related to a certain misconception with regard to its use. Suppose 
a system is in an initial equilibrium state at time zero and subsequently, due 
to some arbitrary variation of the constraints, it is made to evolve to a new 
equilibrium state at t. According to Eq. (2), the entropy change associated 
with the evolution is 

AS = --logp ~ + logp ~ = ASsyst (3) 

Both quantities on the rhs of Eq. (3) constitute functions of equilibrium 
states, as fixed by the constraints at t and 0, respectively. Their difference 
cannot therefore depend on whether the constraints have been varied in a 
reversible or an irreversible manner! This does not imply that Eq. (3) is 
wrong, only that the entropy change AS refers to the system alone. This 

2 T h e  de f in i t ion  o f  p t is m o d i f i e d  so as to  m a k e  S t t i m e  d e p e n d e n t  d e sp i t e  L i o u v i l l e ' s  

e q u a t i o n .  See,  e .g . ,  H o b s o n  ~a~ o r  T o l m a n .  ~4~ 
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suffices for an isolated system but not for the description of a system which 
interacts with its surroundings due to the flow of heat or the action of forces. 
To describe the effect of the external constraints one has to take recourse to 
a property of a stochastic process other than log p. A brief thermodynamic 
preamble will help to characterize such a quantity. 

For an arbitrary process involving a system and external surroundings 
the second law states 

3r = 3S~y~t - 3S~xt >/0 (4) 

Here 3S~y~t is the entropy change associated with the state of the system 
[as in Eq. (3)], 3S~xt is the flow of entropy from the surroundings, and 3~ is 
the net entropy production by the process (often called 8Sin0. If all parts of 
the system exchange heat with a reservoir at reciprocal temperature fiext, the 
entry of a heat increment 3 Q~y~t results in 

3Se~t = fleet 3Q~yst (5) 

whence 

8~ = ~ s  - ~ox~ ~ Q / >  0 (6) 

Here everything except /3~t refers to the system and the corresponding 
subscript is therefore omitted. The "larger than" and the "equal to"  signs 
refer, respectively, to an irreversible and reversible variation of the con- 
straints. Suppose the evolution of the process is not uniquely defined by the 
variation of the specified constraints. Intuitively one would expect that the 
spontaneous tendency to self-equilibration determines a pathway which at 
each instant makes the entropy production as small as possible. This seems 
to underlie an often postulated law of irreversible thermodynamics, which 
says 

3~ is minimal, subject to constraints (7) 

Consider a system undergoing an irreversible change at some Stage of which 
two different pathways A and B present themselves, A corresponding to 
Min(3ff). Assuming that the constraints are no longer varied, and excluding 
fluctuations, it seems unreasonable to suppose that at a later stage B might 
somehow "recover lost ground," producing a value of ~ smaller than that 
for A. Accepting this nonintersection of markedly different pathways, a 
requirement of least integral entropy production for the process is equivalent 
to Eq. (7) and together with Eq. (6) leads to a dictum of 

Minr = Min(AS - 2 fi~t 3Q) for fixed constraints (8) 

Since AS is given by - A  logp [Eq. (3)], our discussion suggests that -~/3o~ t 3 Q 
constitutes the thermal analog of the required probabilistic quantity. 
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In the following we shall demonstrate the existence of  such a quantity, 
called here the discrimination D, of  a stochastic process. The discrimination 
D is easily evaluable (with the help of  a computer) from the probabilities of  
the sequence of  the actual stochastic transitions. Knowledge of D and of  
A logp  (or of  an equivalent change of another state function) enables us to 
achieve our purpose, namely to calculate the net entropy production of  a 
particular irreversible pathway. Alternatively, a consistently probabilistic 
approach might be adopted to advantage: It considers D as the fundamental 
quantity for a stochastic description of  irreversible processes, leading to 
probabilistic counterparts of  the second law and of the principle of  minimum 
entropy production [Eq. (8)]. Later some computer simulation results will 
be reported, describing "op t ima l"  modes of  cooling a square Ising lattice, 
so as to provide a concrete example of  how the proposed theory might work 
in practice. 

2. ASext, ENTROPY P R O D U C T I O N ,  A N D  THE 
D I S C R I M I N A T I O N  OF A S T O C H A S T I C  PROCESS 

Stochastic processes will be discussed in terms of the Ising lattice cooling 
from an initial reciprocal temperature /30 to /3. The lattice consists of N 
magnetic spins, each oriented either up or down, cr = + 1. Near-neighbor 
spins i and j interact with an energy (in units J) 

~is = - ~icrs (9) 

Hence, as the lattice cools and the energy is lowered, there is a net tendency 
of near-neighbor spins to arrange themselves in parallel. With the help of  
a stochastic model, the cooling process is treated by ascribing to each spin a 
transition probability to flip during a unit on a time scale t, f rom cr~ = a to 
~ = -or. As we shall see, the practical way is to treat the spin transitions 
one by one, which defines a parallel time scale s during a unit of  which only 
one spin may undergo a transition. Clearly the numbers of  steps on the two 
scales are related as 

s = N t  (10) 

Suppose at the initial time, t ~< 0, the lattice is at equilibrium at/3e~t = / 30 
and at the onset of  the process it is plunged into a reservoir at/3ext =/3- Two 
possible cooling mechanisms are possible. 

1. The mechanism of the cooling is such that throughout the process 
(t > 0), each spin individually interacts with the heat reservoir. (This can be 
readily visualized for a one- or two-dimensional system, or else for " h o t "  
spins dispersed throughout a supporting medium at /3~xt.) Consider two 
configurations, s and s + 1, adjacent on the s time scale, which differ by the 
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flip of  a particular spin from ~ to - a. In view of  Eq. (9) the energies of  the 
two configurations differ by 

8E~.~+1 = 2(7 ~ or, (11) 
i 

the summation extending over the interacting near neighbors of  the spin. 
Since the exchange 8Es,~+ 1 occurs at/~ext, the transition probabilities, from 
s to s + 1 and back, from s + 1 to s, must obey 

f,,s+i/f,+z,~ = exp(-~e,,~ SE~,s+l) = exp(-2~e,,t ~ %) (12) 

That can be established in detail by referring to the equilibrium state attained 
if the system were to stay in contact with/3ext for a long time. In that case 
the stationary probabilities of  two adjacent configurations obey detailed 
balance. 

p,L.,+I = ps+~A+,,, (13) 

while the Boltzmann distribution established at/3oxt leads to 

p~+x/p~ = -/3~ 3E,,,+1 (14) 

Equation (12) follows from the combination of  Eqs. (13) and (14). Both the 
Glauber model (5~ for a linear Ising lattice relaxation and the Metropolis 
Monte Carlo method <6~,3 are based on Eq. (12). The important feature of  all 
such processes is that P~t uniquely specifies the ratio of  the forward and 
backward transitions at any t; nothing is therefore left for possible determina- 
tion with the help of minimal entropy production. 

2. The heat exchange of  the individual particles at time t > 0 is not 
limited to the heat reservoir/3~xt; it also proceeds internally through some 
cooperative readjustment of  neighboring spins. This is the case for a three- 
dimensional contiguous mass of  initially hot spins. Clearly the extent of  the 
cooperation is related to the rates of heat transfer to /~e= and from spin to 
spin; it should disappear as the system attains equilibrium, so that /~o~t 
prevails internally. For  the sake of  simplicity the N-spin system is treated as 
a homogeneous body and an appropriate cooperative model stochastic process 
describes the external and the internal heat exchange mechanisms jointly. 
Hence the transition probability of a spin to flip depends on the instantaneous 
state of its nearest neighbors [which interact with the spin in the sense of  
Eq. (1 l)] and of its more distant neighbors (which are involved in the local 
internal equilibration). Corresponding models are described later, in con- 

a See Refs. 7 for application to the Ising lattice, Refs. 8 for application to the study of 
relaxation. 
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nection with the computer simulation results. Here we present a single 
example, illustrating our description of the cooperative cooling. The transi- 
tion probability resembles the noncooperative equation (12) but depends on 
both near and next-nearest neighbors, j and k, respectively: 

K1 and K2 constitute adjustable parameters, and replace the definite recip- 
rocal temperature/3ext of the noncooperative case. Their value, possibly time 
dependent, remains to be fixed with the help of the principle of minimum 
entropy production. For that purpose, however, the ratios of transition 
probabilities have to be related to thermodynamic variables. 

Consider a sequence of N spin steps which varies the lattice configuration 
from s to s + 1, s + 2,..., until s + N (when no flip occurs, adjacent con- 
figurations remain identical). The nature of the process, visiting each lattice 
site once and only once, allows only one connecting pathway for a particular 
pair of s and s + N configurations. The N-step probability is therefore equal 
to a product of the one-step transition probabilities 

F~,s+N = f~,~+zf~+~,s+2 ""f~+N-z,s+u (16) 

Similarly, the product of the reverse one-step transition probabilities 
fs+N,~+N-1 ""f~+~,~ is equal to the reverse N-step transition probability 
F~+N.~. The increase of the discrimination at time t, s / N  < t <<. (s + N ) / N ,  is 
defined by the ratio of these two transition probabilities: 

s + N  

3D t = log(F., .+z~/r.+u,,)  = ~ log(f~,.,+~/f~.+~,~,) (17) 
S ~ m  

The above constitutes the outcome for a particular execution of a model 
stochastic process. The average value of 3D t, characterizing the model, is 

<SO'> = po' D=' (18) 
g 

where p t is the probability of an a execution. For large N, however, the large 
number of single stochastic steps ensures that the observable outcomes do 
not differ markedly from the average. Thus 

(3D=t)obe,rvabl. ----- (3D ~) for large N (19) 

It is now proposed that minus the external entropy change [cf. Eq. (4)] is equal 
t o  (SDt) o r ,  approximately, t o  (SDt)ob . . . . .  b l e :  

-3Stoxt = (SD') ~ (SDt)ob~erwb~ (20) 
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The proof is immediately for the noncooperative case: 

s + N  s + N  

3D t =  ~ log(f~,,e+l/f~,+~,~,) =- /3 ,~ t  ~ 8E~,~+z 
8P=$ 8 " = 8  

= --flext 3Qt  = _ 8Stxt noncooperative case (21) 

where the second equality holds identically for any execution a [see Eq. (12)], 
the third follows from the first law of thermodynamics, and the last holds 
for a system all parts of which exchange heat with a reservoir at/3~ t [Eq. (5)]. 

We would like to write an analogous sequence of equalities for the 
cooperative case. For that purpose the bulk system, with its joint external 
and internal mechanisms of heat exchange, is likened to a hypothetical system 
all particles of which exchange heat individually at an equivalent reciprocal 
temperature fit~xt, i.e., the cooperative cooling of a bulk system in contact 
with flext is equated to a noncooperative cooling at t fi~xt, whence fitxt is defined 
by the ratio of (the logarithms of) the transition probabilities and of the 
associated uptake of heat, in analogy to Eq. (21). [fitxt may be time dependent 
in view of the possible time dependence of the adjustable parameters with 
the help of which the cooperative transition probabilities are defined, cf. 
Eq. (15).] However, this ratio can be assigned the true meaning of a (reciprocal) 
reservoir temperature only if its value at time t is the same for any execution 
of the stochastic process. This cannot be strictly true, but for large enough 
N, fl~,t should be constant to a very good approximation [cf. Eq. (19)]. Thus 
/3t.t of the equivalent noncooperative heat exchange is formally defined and 
fulfills an approximate equality as follows: 

/ s + N  \ I / s + N  \ 

f l ~X t  = --~s~=log(fs,.s,+l/f~'+l,s,))l~s,~=s~Es'.s'+l 
= - ( S D t ) / ( S Q  t)  ~_ (3Dt/3Qt)ob=o=,,~b~ ~ for large N (22) 

so that 

( S D  ~5 = - f i t~x t (SQt )  = - 8So,,t, cooperative case (23) 

where the second equality is due to the fact that the hypothetical non- 
cooperative cooling at fl~xt obeys Eq. (5). Equations (21) and (23) establish 
the validity of Eq. (20) for the noncooperative and cooperative modes of 
cooling. Summation of Eq. (20) for the total duration of a stochastic process, 
from s = 0 to oJ, or from t = 0 to ~- = u / N ,  gives 

o 9 - 1  

(D0,0obserwble = ~ log(f~,s+l/fs+z,~) ~ ( D o , t )  = -ASext 
$ = 0  

(24) 

We can now return to our main purpose. Equation (4) summed and 
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combined with Eqs. (3) and (24) gives the probabilistic expression for the 
integral production of entropy 

r = < - l o g p  *) + logp ~ + (D0,,) (25) 

Here the bracketed averages are over executions (a) of a model process pro- 
ceeding to ~-; such averaging, of course, reproduces the barred ensemble 
averaging [over configurations at time ~-, as in Eq. (3)]. So much for the 
evaluation of r the principle of minimum entropy production [Eq. (8)] then 
implies looking for models for which the rhs of Eq. (25) is the smallest. Two 
alternatives might be distinguished: First, at t = z, the system is said to have 
effectively attained internal equilibrium at ft. If  so, ( logp *) constitutes a 
function of state independent of the process which took the system from 
t = 0 to r. Then M i n r  reduces to Min(D).  Second, at t = ~- the external 
temperature is said to have permeated the system, so that individual spins 
exchange heat with the reservoir at Pext =/3 (or the cooling is noncooperative 
for t /> 7). However, we do not know what the internal state of the system is 
at t = ~-, particularly whether it has or has not reached equilibrium (this 
indeed constitutes the generally encountered situation). A straightforward 
minimization of r with the help of Eq. (25) is then inoperative, since one does 
not know how to compute <log p *) for the end points of arbitrary model 
processes. A simple subterfuge provides a way out of the difficulty. First, in 
view of Eq. (21), for the noncooperative cooling, we note that 

D~,co = --/3 AE~,| (26) 

o r  

Do, | +/3 AEo,~ = Do,~ +/3 AEo,, (27) 

where t = oo corresponds to the equilibrium state for/3. Adding and sub- 
tracting/3(E ~176 to Eq. (25), for ~ from t = 0 to oo, therefore gives 

r = ( - /3(E~176 + ( - l o g p ~ 1 7 6  + logp ~ + /3E ~ +/3(AEo,~)  + (Do, oo) 

= log Z(fi) - log Z(/3 ~ +/3<AEo.~) + <Do,t> (28) 

Z(/3), the partition function at/3, is a function of state independent of the 
process. Minimum entropy production for the process from 0 to oo leads 
therefore to the following optimization principle for the cooling from t = 0 
to ~-: 

Min r ~ Min(/3(AE0,~) + (Do,~)) (29) 

o r  

Max(-~<AEo, ~> - <Do,~)) (30) 

if the system becomes permeated by/3ext =/3 at t >/ ~-. Both <AEo,~) and 
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(D0,y) are evaluable for a model stochastic process with the help of computer 
simulation. Equation (30) therefore provides the means for the determination 
of an incompletely specified irreversible process. 

3. A PROBABILISTIC V I E W P O I N T  OF THE 
D I S C R I M I N A T I O N  

We would like to take an alternative viewpoint and discuss the concept 
of discrimination without recourse to thermodynamic parameters. As already 
noted, the basic probabilistic equations (1) and (2) leads to a quantity 
(log pt) which does not allow one to distinguish between an irreversible and a 
reversible variation of the constraints. A quantity which could enable such a 
distinction to be made should possess the following properties: 

1. The quantity should be expressible in terms of macroscopic variables 
and these should reduce to thermodynamic variables whenever an equivalent 
thermodynamic description exists. 

2. Its evaluation should agree with the second law of thermodynamics, 
with the "equal to"  and the "larger than"  signs applying, respectively, to a 
reversible and irreversible variation of the constraints. 

3. The description of irreversible processes with the help of the candidate 
quantity must be consistent with experimental evidence. It appears at the 
present state that such experiments can only be performed by computer 
simulation. 

In addition, it would be desirable if the candidate quantity and the 
reason for its minimization could be explicable in terms of intuitive concepts. 
Upon consideration of Eq. (17), it can be seen that the incremental contribu- 
tion to D, namely log(fs,s+ l/fs+ ~,~), measures the preference accorded to the 
transition from an old to a new configuration (s, s + 1) over the reverse 
transition (s + 1, s). The accumulated value of this quantity for many steps 
of the process therefore measures the "probabilistic effort" (or "bias," or 
"discrimination") with which the process achieves the change from one 
probability distribution to another. Thus, if the distribution does not change, 
(f~,s § 1/f~ + 1.s) should be on the average equal to one; it should be greater than 
one if the process leads to a less random (more discriminatory) distribution. 
The justification for taking the logarithm of the ratio of the transition proba- 
bilities is the requirement for additivity over the individual steps of the process, 
which assures the extensiveness of D. Analogous to Jaynes' requirement of 
minimal information for the description of systems, we shall require least 
discrimination for processes. For an incompletely specified process one 
postulates accordingly 

Min(D),  subject to constraints (31) 
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This brings us to the requirement derived before for a process proceeding from 
one specified state to another, namely to the first alternative considered in the 
discussion following Eq. (25). In the second alternative considered there, the 
process is such that for t /> r the system is permeated by the reservoir's 
/3ex t =/3. In that case Eq. (31) leads to 

Min(/3(E) + (D)),  for a system permeated by/3 (32) 

where the derivation merely paraphrases Jaynes' argument concerning the 
minimization of logp at given/3 (implying an effectively constant E; see 
Ref. 3, for example). Equation (32) is identical with Eq. (30), which has been 
derived with the help of a thermodynamic argument. These observations 
complete the intuitive description of D, of Min D, and of  Eq. (32). 

The fulfillment of the first of the above-listed properties has already been 
demonstrated in the course of our thermodynamic discussion of D [cf. Eqs. 
(21) and (23) for the noncooperative and cooperative cases, respectively]. 

The argument with regard to the second property is more complicated. 
Consider the contribution of step s to the discrimination [Eq. (24)], which is 
given by (the logarithm of) the ratio of the forward and backward transition 
probabilities, f~,s+l/f~+l,~. Here subscripts s and s + 1 denote, respectively, 
configurations arrived at the s and s + 1 steps of a particular process. The 
time-dependent probabilities of the s and s + 1 configurations at time s 
(indicated in the superscript) therefore are pfl and p~ + 1, respectively. These 

s + l  probabilities are defined for any instant of time and p~+ 1, for example, is the 
probability of the s + 1 configuration at time s + 1. Only pairs of configura- 
tions communicate at an s step of the process. Hence the configurational 
probabilities may be related to the transition probabilities by the relatively 
simple master equation 

p S + l  s ~ s + l  s s s+l -- Ps+I ---- ves+l = Ps)Cs,s+z - -  Ps+l f~+l , s  

_ _  8 - P s ~ , s  + 1 - _s+ 1.[" .~ns+ 1 f ~'8+1j~+1,~ + (33) ~ / - ' s +  1 J  s + Z , s  

which upon rearrangement becomes 

8+1 ~ ~ - ~ + l ; " ~ + z z ) ,  ,~ = (1 - - f ~ + I , ~ ) / L + I , ~  > 0 f ,s§ = (ps+l lp8)(1  + 
(34) 

The discrimination of a particular execution [Eq. (24)] can therefore be 
rewritten 

C0--1  

D = log(A,.1/A§ 
s = O  

co-1 ~)--1 

= + log(1 + @ Ci/p;Ci) (35) 
s = O  8 ~ 0  
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But 

Hence 

c o - 1  
8-1-1 8 log(p,+ ~[P8 ) = l o g ( P 2 [ P o  ~ (36) 

s=O 

>8+ 1 , \  < D )  - < l o g ( p 2 / p o ~  = \ - ~  log(1 + e~ ~,~+1w8+1,/ (37) 
k s = 0  

On the average ~.,8+ 1 is zero or positive. It is zero for the reversible variation ~/-'8 + i 

of the constraints, which proceeds through a sequence of equilibrium states. 
Indeed, the invariance of the probabilities p~ + 1 constitutes a definition of an 
equilibrium state. For the nonequilibrium probability distribution corre- 
sponding to an irreversible variation of  the constraints, the average v~,s~'~s++ 11 is 
positive. This is because, speaking broadly, configurations that attain their 
maximum probability at time s + 1 are preferred in the averaging over con- 
figurations for the same instant of  the time (subscript s + 1). To show this 
in detail [skipping the proof, one can pass to Eq. (39)], we observe that the 
averaging in Eq. (37) is over executions c~, as in Eq. (18). To any a that reaches 
time s + 1 belongs a particular configuration for that instant, namely one 
with s + 1(~) as subscript. The probability of  such an event is _8+1 The P s +  l ( a ) "  

number of different events, like the number of  the Ising lattice configurations, 
is 2 N. Therefore the average value of 3pg + 1 1(,) over the executions is formed 
by summing, for all s + 1(~), 3p~+~c~> multiplied by its probability p~_~(~). 
Thus 

2 N 
8 + 1  ~ .  , ~ s + l  [ ~ 8 + 1  S <~P~+I> = - p . + l < ~ ) ]  F s +  1(o:) [ F 8  + l(t~) 

S+ I(O.)= I 

2N 

rns+l 12 [ 8+1 8 = u~s + l(e)J --  tPs + l(~>Ps + 1(~>] > 0 (38) 
s + l(u) = 1 

In the last step of  Eq. (38) the "larger than"  sign is due to the fact that the 
(positive) autocorrelation ^r 1 increases with decreasing displacement in U * F s +  1(~) 

time. Thus the terms es+l(.)-*+l x P~+1(.~8+1 (with no displacement) are on the 
average larger than the terms e~+1(~)"~+1 x p~+~(~)~ (with a displacement of one 
step). The positivity ~ s+l of  < 'Ps§ 1> implies in turn (by expanding the logarithm 
to first order) that the rhs of Eq. (37) is positive, so that 

<D) - < l o g ( p ~ / p o ~  >>. 0 (39) 

To complete the argument, the second term of  the above equation has to be 
identified with AS. For that purpose let us recall the already mentioned very 
useful approximation enabling one to identify what is actually observed for 
large N with the average [cf. Eq. (19)]. Thus 

(log p~t)ob . . . . .  ble - <log p t )  for large N (40) 
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so that 

- ( l o g ( p 2 / p o ~  ~_ - (log po,~ ~ + (log p00)observ~b~o 

- -1ogp2  + 1ogp0 ~ = AS (41) 

See Eq. (3) for the last equality. Equation (39) combined with Eqs. (24) and 
(41) gives 

AS + <D> = AS - AS~xt /> 0 (42) 

showing that the second property, requiring agreement with the second law, 
is satisfactorily fulfilled. 

In conclusion let it be pointed out that, whenever the variation of 
constraints need not be considered, our principle reduces to Jaynes' principle 
of minimum information. As we have just shown, for an equilibrium process 
( - D )  becomes equal to the change of information for the system, AS 
(=  -Alogp) .  For a totally isolated system (D)  = 0 and once again [cf. 
Eq. (25)1 the minimization principle relates to the information alone. 

4. C O M P U T E R  S I M U L A T I O N  RESULTS 

Results of preliminary computer simulations of the cooling of a square 
Ising lattice will now be presented. The purpose of the computer experiments 
was twofold. First, to illustrate the application of the present theory to actual 
stochastic processes, notably to calculate the discrimination and the entropy 
production, trying to minimize its value; second, to devise modes of relaxation 
which might speed up the attainment of equilibrium of large cooperative 
systems, thereby providing an efficient alternative to the widely used Metrop- 
olis Monte Carlo method. (6-~) The second purpose thus continues previous 
work, (9> which dealt with the computer study of systems at equilibrium. 

The following process is to be simulated: At time t = 0 the lattice is at 
equilibrium with t3~ 0, which implies an initially random distribution. 
During the duration of the process the lattice is cooled to the reciprocal 
temperature/3ext =/3 in one of three different manners, to which correspond 
our stochastic models I, II, and IIi. 

M o d e l  I ("Metropolis C o o l i n g " ) .  Throughout the process the spins ex- 
change heat individually (i.e., noncooperatively) with a reservoir at/3. The 
transition probability for a spin to flip therefore depends on the instantaneous 
state of its four near neighbors, just as in Eq. (12). A "symmetrical" choice 
for the cr --~ - ~r and - cr --> ~ transitions leads to 

o o ,X 
J \ J 
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where 

/3ext = fl (44) 

Such a cooling corresponds to a "T- jump" type of relaxation. Furthermore, 
the discrimination is identically equal to -/3 AE [cf. Eq. (12)] and there is 
no room for a consideration of minimum entropy production. 

ModelH(" Gradual Metropolis Cooling"). Once again the spins exchange 
heat individually (noncooperatively), but with a series of reservoirs which 
become progressively cooler with time. Thus (quite arbitrarily) the reciprocal 
temperature of the reservoirs fl~xt is assumed to increase linearly as t increases, 
attaining at t = r its ultimate value/3~xt --/3- The transition probability is 
therefore precisely as in Eq. (43), but with 

f/3t/~" + a(1 - t/r), t <<. r (45) 
/3ext = /3~xt = ( / 3 ,  t > ,- 

r e p l a c i n g  Eq. (44). Here a, which corresponds to/3ext of the initial reservoir, 
constitutes an adjustable parameter. One can therefore study the dependence 
of the entropy production on the value of this parameter. Alternatively one 
can regard model II as describing the cooling of a bulk system which ex- 
changes heat both externally with a reservoir at /3e~t = 13 and internally 
through the equilibration of near-neighbor spins. [Model II then constitutes 
a particular case of the cooperative model III described in Eqs. (46) and (47) 
below, with/s =/3txt and /(2 = 0.] In that case/~gxt acquires the meaning 
of the reciprocal temperature which provides the hypothetical noncooperative 
equivalent of a cooperative process [see Eqs. (22)-(23)]. 

Model III (" Cooperative Cooling"). A bulk system in contact with a heat 
reservoir at/3ext = fl cools through a joint external and internal heat exchange. 
The transition probability for a spin to flip therefore depends on two groups 
of neighbors--nearest, ~j %, and more distant, Y.k ~ ,  as already mentioned 
in Eq. (15). The transition probability is of the form of the Metropolis 
equation (43), but has two time-dependent coefficients: 

exp[-r Y4 % + K2 ~k r (46) 
f~,_~ = 1 - f_o,~ = 2 cosh[-~(Kz ~j ~j + K2 ~k ak)] 

where 

K z = { ~ i / r + a ( l - t / r ) "  t>-rt<~ r and K z = f  b(1-t/'r)'(O, t >  r t~< ~" (47) 

The choice of this particular dependence assures that for t >t r the reservoir 
reciprocal temperature flext =/3 has permeated the system internally, so that 
the cooperativity of individual flips disappears. Again entropy production 
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can be studied as a function of the two nonnegative adjustable parameters a 
and b which regulate the relative importance of  the nearest and of the more 
distant interspin correlations. Two types of more distant correlations have 
been considered. In "model  I I Ia"  the summation ~k cr~ extends over the 
entire lattice, in "model  I I Ib"  it extends over the eight second neighbors of a 
spin. Clearly models IIIa and IHb represent, respectively, the extremes of  the 
long and short range of  cooperation. 
'- The following computer results are discussed in connection with these 

four models. The interaction energy per spin [see Eq. (9)], 
N 4 

E = - (2N)-1 ~" ~ cricrj (48) 
/ , = l J ~ l  

and the spontaneous magnetization per spin 
N 

M = N -1 ~ or, (49) 
i = 1  

are both measurable for any instant of  the process. Measurements of /~  and 
of E 2 after equilibrium has been reached enable one to find the specific heat 
per spin from 

C =/32N(EZ - E 2) (50) 

Finally, the measurement of the discrimination of the process [Eq. (21)] 
enables one to calculate the integral entropy production of  the cooling, per 
spin, with the help of Eq. (28). Here for the initially random state, log Z(/3 ~ --- 
log 2, while the final value log Z(/3) is taken from Onsager's theory. Two 
approximations are made. Results obtained for N from 802 to 2502 are 
compared to theoretical values of  E, M, and log Z(/3), which are for infinitely 
large N. Furthermore, in the spirit of  Eq. (19), outcomes of particular execu- 
tions of the stochastic process are identified with mean values, which also is 
strictly true only for infinite N. 

Table I summarizes the entropy production for the cooling of a lattice 
with N = 2502 from/3 o = 0 to p = 0.5, 0.45, 0.44, or 0.43 during ~- = 100 
cycles per lattice. For models II, IIIa, and IIIb the results are for "optimal  
cooling", i.e., for values of the adjustable parameters that gave the smallest 
entropy production (model I has no degree of  freedom left). The following 
gives some indication of the order of magnitude of  the parameters: For  
model II at/3 = 0.43, a = 0.08 [Eq. (45)]; for model IIIb at the same /3, 
a - - 0 . 0 8  and b = 0.7 [Eq. (47)]. For model IIIa at /3 = 0.5 and 0.45, 
respectively, a = 0 and 0.02, and b = 0.57 and 0.28. Indeed, as might be 
expected, the values of a in all cases turn out to be close to zero, indicating 
that smallest entropy production requires that the first equivalent cooling 
reservoir not be markedly different from the initial state/30. The main con- 
clusion is that for/3 = 0.5, 0.45, and 0.44, the smallest entropy production, 
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Table  I. The Entropy Product ion ~0.~ [Eq. (28)]  for Opt imized Models  Ilia, 
IIIb, II, and I Describing the  Cooling of a Lattice N = 2 5 0 2  Start ing f r o m / ~ ~  

and At ta in ing  Var ious Values of 

fl Ilia IIIb II I log Z(~)~heo~ 

0.5 0.0115 0.0339 0.0271 0.3356 1.0258 
0.45 0.0087 0.0110 0.0130 0.2506 0.9438 
0.44 0.0089 0.0098 - -  0.2355 0.9287 
0.43 0.0081 0.0077 0.0099 0.2221 0.9153 

or optimal cooling, is obtained with the long-range cooperative model IIIa,  
the short-range cooperative model I I Ib  giving the smaller entropy production 
for/3 = 0.43. To recall, the Ising reciprocal temperature at which long-range 
ordering sets in is/3orlt = 0.441, and a slightly smaller value is expected for 
the present lattice sizer 1~ The gradual Metropolis model II, which allows 
no correlations beyond nearest neighbors, gives a higher entropy production 
at all/3, whereas a still larger production corresponds to the abrupt T-jump 
of  the conventional Metropolis model I process. Furthermore, the entropy 
production is not very large for any of  the three models, II, I I Ia ,  and I iIb,  
that are allowed to cool gradually toward/3 during the relatively long time 
interval r = 100. The entropy production is, however, expected to decrease 
markedly as the cooling is done more gradually. This has been confirmed 
by optimizing the model I I Ia  process; for a lattice N = 1002 cooling toward 
/3 = 0.5, the values of  ~0,~ decrease from 0.11 to 0.05 to 0.015, respectively, 
as r increases from 5 to 20 to 100. 

Table I I  displays the values of  E, M, and C for the optimal processes, 
i.e., those of  Min 4 in Table I. The experimental results represent time 
averages from t = ~- to 1.2r. Their satisfactory agreement with the theoretical 
values indicates that the optimal, or most reversible, modes of cooling enable 
the equilibrium state at/3 to be reached almost concurrently with the establish- 

Table II. Experimental  Values of the  Thermodynamic  Variables,  at t > ~, 
Obta ined wi th  the  Models  That  Gave the  M in ima l  Entropy Product ion in 
Table I, Compared wi th  Theoret ical  Values for an Inf ini te  Latt ice at Equi l ibr ium 

fl Model - E - Ethoor M M~heor C Ct~eor 

0.5 IIIa 1.744 1.745 0.911 0.911 1.0 0.73 
0.45 IIIa 1.507 1.513 0.745 0.749 1.8 1.61 
0.44 IIIa 1.446 1.402 0.684 0 1.7 2.88 
0.44 IIIb 1.352 1.402 0.11 0 3.1 2.88 
0.43 IIIb 1.284 1.300 0.07 0 1.5 1.48 
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ment of  thermal permeation, namely at times only slightly larger than -r. 
Once again, this seems to constitute a sensible result. Incidentally, considering 
the relatively large N and the proximity to/3orit, this agreement also indicates 
the potential usefulness of  such most reversible modes of relaxation for the 
study of systems at equilibrium. 

Their usefulness is further demonstrated by the results for the spontaneous 
magnetization as a function of  time for lattices cooling toward /3 = 0.45 
(>/3orit) (Fig. 1) and toward fl = 0.43 (</3orid (Fig. 2). The results for N --- 
2502 obtained with model I l i a  in Fig. 1 and with model I I Ib  in Fig, 2 indicate 
that M converges quite smoothly to its theoretical value at t slightly larger 
than r. In contrast, the time needed to converge to the theoretical value is 
much longer with the Metropolis method, and much smaller N = 802, 1002, 
and 2002 could therefore be studied. Moreover, the observed fluctuations are 
severe and the reproducibility for similar conditions is poor. At/3 = 0.45 one 
experiment (N = 802) converges to the theoretical value but two others, 
N = 1002 and 2002, do not acquire long-range order as required; the experi- 
ments at /3 = 0.43 < /3orit all exhibit a meandering tendency to acquire 
long-range order. 

As a last reasonable aspect of  the results, one might mention the fact 
that the optimized models invariably exhibited a monotonic variation of the 
macroscopic variables during the cooling from t = 0 to ~-. (A nonmonotonic 
variation could be obtained with a suitable choice of  parameters for models 
I I l a  and IIIb.  Such processes, however, had a much larger entropy produc- 
tion.) An example is displayed in Fig. 3, which gives results for the afore- 
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Fig. 1. The development with time t of the spontaneous magnetization M [Eq. (49)] for 
lattices undergoing a variation from/30 = 0 to # = 0.45 for ~ = 100. The results are for: 
(i) the long-range cooperative model IIIa [Eq. (47)] with N = 2502 (�9 (ii) the Metrop- 
olis model I [Eqs. (43), (44)] with N = 802 (+), N = 1002 (x),  and N = 2002 (O). 
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Fig. 3. The development  with t ime t o f  the energy E [Eq. (48)] and spontaneous  magne t -  
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N = 2502 undergoing a var ia t ion from/30 = 0 to/3 = 0.5 for r = 100. 
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mentioned optimized model IIIa, describing a lattice N--2502 cooling 
toward/3 = 0.5 in ~- = 100 lattice units of time. The results are for E and M 
and for/?~xt calculated with the help of Eq. (22), from the ratio of 3D and ~E. 

5. C O N C L U S I O N S  

The description of nonequilibrium behavior of macroscopic systems with 
the help of model stochastic processes has been considered. What is needed 
in this connection is a stochastic quantity with which one could evaluate the 
entropy change associated with the effect of constraints upon the system, 
ASext- (To recall, ASext and the entropy change associated with the state of 
the system AS enable one to evaluate the net entropy production 4' and 
thereby to seek pathways of Minr for incompletely specified processes.) 

It is proposed here that the quantity to be identified with --ASo~t is the 
average discrimination of a process (D) computed from the transition proba- 
bilities of the stochastic steps [Eq. (24)]. The proposal is trivial when AS~t 
for a process may be computed directly from well-defined equivalent thermo- 
dynamic variables [Eq. (21)]; it is nontrivial, however, when the definition of 
the thermodynamic equivalents, notably of the temperature, becomes arti- 
ficial, or even doubtful. As an example, we have considered a bulk system 
which cools, fairly rapidly, by joint external and internal mechanisms of heat 
exchange, as represented by our "cooperative" model process. Another 
example (discussed elsewhere <m) treats a rapid adiabatic process for which 
the temperature is likewise ill defined. Other examples might be provided by 
certain stochastic processes taken from the realms of biology, economics, or 
sociology (as reviewed recently<12>). In all such cases the direct evaluation of 
AS~t from D would make the introduction of an ill-defined temperature 
quite unnecessary. 

Admittedly the present proposal still requires experimental verification. 
Preliminary support is provided by the discussion of our computer simulation 
results. The proposal is also supported by its agreement with the second law 
of thermodynamics; this is further corroborated by D reducing to a thermo- 
dynamic expression when such is available [see Eq. (21) and, insofar as the 
concept of an equivalent pt~t is physically significant, Eq. (23) as well]. 
Finally, in the absence of varying constraints, our proposal reduces to the 
Jaynes' principle of minimum information, notably for a totally isolated 
system ((D) = O) or at equilibrium ((D) = A logp). 
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